Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
AMB Express ; 14(1): 43, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658456

RESUMO

A former work conducted in our Lab, lead to in a effective scale up of vitamin D3 bioconversion into calcitriol by Actinomyces (A.) hyovaginalis isolate CCASU-A11-2 in Lab fermenter (14 L) resulting in 32.8 µg/100 mL of calcitriol. However, the time needed for such a bioconversion process was up to 5 days. Therefore, the objective of this study was to shorten the bioconversion time by using cell-free lysate and studying different factors influencing bioconversion. The crude cell lysate was prepared, freeze-dried, and primarily fractionated into nine fractions, of which, only three fractions, 50, 100, and 150 mM NaCl elution buffers showed 22, 12, and 2 µg/10 mL, calcitriol production, respectively. Ammonium sulfate was used for protein precipitation, and it did not affect the bioconversion process except at a concentration of 10%w/v. Secondary fractionation was carried out using 80 mL of the 50 mM NaCl elution buffer and the results showed the 80 mL eluent volume was enough for the complete elution of the active protein. The pH 7.8, temperature 28 °C, and 6 h reaction time were optimum for maximum calcitriol production (31 µg/10 mL). In conclusion, the transformation of vitamin D3 into calcitriol was successfully carried out within 6 h and at pH 7.8 and 28 °C using fractionated cell lysate. This process resulted in a 10-fold increase in calcitriol as compared to that produced in our previous study using a 14 L fermenter (32.8 µg/100 mL). Therefore, cell-free lysate should be considered for industrial and scaling up vitamin D3 bioconversion into calcitriol.

2.
AMB Express ; 13(1): 142, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079030

RESUMO

Most antibiotics now used in clinical practice are cephalosporins. Acremonium (A.) chrysogenum W42-I is an intermediate strain out of W42 strain improvement program whose productivity is above that of the wild-type strain to produce the broad-spectrum antibacterial cephalosporin C (CPC). As a result, fermentation process optimization is considered because it offers the ideal environment for strains to reach their full potential. Our research aimed to combine a rational design to regulate the fermentation process environment and culture media as well as to develop mutants with high productivity. Different media were tested to obtain maximum CPC production. To maximize the production of CPC, some environmental parameters were experimentally optimized via the Box-Behnken design used for response surface methodology (RSM). There were 17 tests conducted, and each experiment's reaction was recorded. Improvement of the CPC production was further achieved via mutagenesis using gamma radiation. Results revealed that a pH of 4, an incubation period of 4 days, and an inoculum size of 1% v/v using the optimized media (CPC2) were the optimum conditions for enhancing the CPC production by 4.43-fold. In addition, gamma irradiation further enhanced production to reach 3.46-fold using an optimum dose of 2 KGy. In conclusion, in comparison to initial production levels, CPC production increased 4.43-fold because of nutritional and environmental optimization. The mutant AC8 demonstrated a roughly 3.46-fold increase in activity against its parent type. Moreover, subsequent AC8 mutant culture demonstrated excellent genetic stability.

3.
AMB Express ; 13(1): 73, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37434090

RESUMO

Vitamin D3 is a fat-soluble prohormone that is activated inside the liver to produce 25-hydroxyvitamin D3 (calcidiol), and in the kidney to produce the fully active 1α, 25-dihydroxy vitamin D3 (calcitriol). A previous work piloted in our laboratory, resulted in a successful recovery of a local soil-promising Actinomyces hyovaginalis isolate CCASU-A11-2 capable of converting vitamin D3 into calcitriol. Despite the rising amount of research on vitamin D3 bioconversion into calcitriol, further deliberate studies on this topic can significantly contribute to the improvement of such a bioconversion process. Therefore, this work aimed to improve the bioconversion process, using the study isolate, in a 14 L laboratory fermenter (4 L fermentation medium composed of fructose (15 g/L), defatted soybean (15 g/L), NaCl (5 g/L), CaCO3 2 g/L); K2HPO4, (1 g/L) NaF (0.5 g/L) and initial of pH 7.8) where different experiments were undertaken to investigate the effect of different culture conditions on the bioconversion process. Using the 14 L laboratory fermenter, the calcitriol production was increased by about 2.5-fold (32.8 µg/100 mL) to that obtained in the shake flask (12.4 µg/100 mL). The optimal bioconversion conditions were inoculum size of 2% v/v, agitation rate of 200 rpm, aeration rate of 1 vvm, initial pH of 7.8 (uncontrolled); addition of vitamin D3 (substrate) 48 h after the start of the main culture. In conclusion, the bioconversion of vitamin D3 into calcitriol in a laboratory fermenter showed a 2.5-fold increase as compared to the shake flask level where, the important factors influencing the bioconversion process were the aeration rate, inoculum size, the timing of substrate addition, and the fixed pH of the fermentation medium. So, those factors should be critically considered for the scaling-up of the biotransformation process.

4.
Front Cell Infect Microbiol ; 13: 1149848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065190

RESUMO

Introduction: The insurgence of antimicrobial resistance is an imminent health danger globally. A wide range of challenging diseases are attributed to methicillin-resistant Staphylococcus aureus (MRSA) as it is weaponized with a unique array of virulence factors, and most importantly, the resistance it develops to most of the antibiotics used clinically. On that account, the present study targeted the optimization of the production of a bacteriophage active against MRSA, and evaluating some of its characters. Methods and results: The bacteriophage originated from a quite peculiar environmental source, raw chicken rinse and was suggested to belong to Podoviridae, order Caudovirales. It withstood a variety of extreme conditions and yield optimization was accomplished via the D-optimal design by response surface methodology (RSM). A reduced quadratic model was generated, and the ideal production conditions recommended were pH 8, glycerol 0.9% v/v, peptone 0.08% w/v, and 107 CFU/ml as the host inoculum size. These conditions led to a two-log fold increase in the phage titer (1.17x10¹² PFU/ml), as compared to the regular conditions. Discussion: To conclude, statistical optimization successfully enhanced the output of the podoviral phage titer by two-log fold and therefore, can be regarded as a potential scale-up strategy. The produced phage was able to tolerate extreme environmental condition making it suitable for topical pharmaceutical preparations. Further preclinical and clinical studies are required to ensure its suitability for use in human.


Assuntos
Bacteriófagos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Animais , Bacteriófagos/fisiologia , Galinhas , Antibacterianos
5.
Mol Biol Rep ; 50(6): 4945-4953, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37081308

RESUMO

BACKGROUND: The dissemination of carbapenem resistance via carbapenemases, such as the metallo-ß-lactamase NDM, among Enterobacterales poses a public health threat. The aim of this study was to characterize a plasmid carrying the blaNDM-1 gene, which was extracted from a clinical Klebsiella pneumoniae uropathogen from an Egyptian patient suffering from a urinary tract infection. METHODS AND RESULTS: The recovered plasmid was transformed into competent E. coli DH5α which acquired phenotypic resistance to cefoxitin, ceftazidime, and ampicillin/sulbactam, and intermediate sensitivity to ceftriaxone and imipenem (a carbapenem). Whole plasmid sequencing was performed on the extracted plasmid using the DNBSEQ™ platform. The obtained forward and reverse reads were assembled into contigs using the PRINSEQ and PLACNETw web tools. The obtained contigs were uploaded to PlasmidFinder and ResFinder for in silico plasmid typing and detection of antimicrobial resistance genes, respectively. The final consensus sequence was obtained using the Staden Package software. The plasmid (pNDMKP37, NCBI accession OK623716.1) was typed as an IncX3 plasmid with a size of 46,160 bp and harbored the antibiotic resistance genes blaNDM-1, bleMBL, and aph(3')-VI. The plasmid also carried mobile genetic elements involved in the dissemination of antimicrobial resistance including insertion sequences IS30, IS630, and IS26. CONCLUSIONS: This is Egypt's first report of a transmissible plasmid co-harboring blaNDM-1 and aph(3')-VI genes. Moreover, the respective plasmid is of great medical concern as it has caused the horizontal transmission of multidrug-resistant phenotypes to the transformant. Therefore, new guidelines should be implemented for the rational use of broad-spectrum antibiotics, particularly carbapenems.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli , Klebsiella pneumoniae , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Fenótipo , Plasmídeos/genética , Farmacorresistência Bacteriana/genética
6.
Ann Clin Microbiol Antimicrob ; 22(1): 23, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013561

RESUMO

BACKGROUND: Methicillin-Resistant Staphylococcus aureus (MRSA) causes life-threatening infections, with narrow therapeutic options including: vancomycin and linezolid. Accordingly, this study aimed to characterize phenotypically and genotypically, the most relevant means of linezolid resistance among some MRSA clinical isolates. METHODS: A total of 159 methicillin-resistant clinical isolates were collected, of which 146 were indentified microscopically and biochemically as MRSA. Both biofilm formation and efflux pump activity were assessed for linezolid-resistant MRSA (LR-MRSA) using the microtiter plate and carbonyl cyanide 3-chlorophenylhydrazone (CCCP) methods, respectively. Linezolid resistance was further characterized by polymerase chain reaction (PCR) amplification and sequencing of domain V of 23 S rRNA; rplC; rplD;and rplV genes. Meanwhile, some resistance genes were investigated: cfr; cfr(B); optrA; msrA;mecA; and vanA genes. To combat LR-MRSA, the effect of combining linezolid with each of 6 different antimicrobials was investigated using the checkerboard assay. RESULTS: Out of the collected MRSA isolates (n = 146), 5.48% (n = 8) were LR-MRSA and 18.49% (n = 27) were vancomycin-resistant (VRSA). It is worth noting that all LR-MRSA isolates were also vancomycin-resistant. All LR-MRSA isolates were biofilm producers (r = 0.915, p = 0.001), while efflux pumps upregulation showed no significant contribution to development of resistance (t = 1.374, p = 0.212). Both mecA and vanA genes were detected in 92.45% (n = 147) and 6.92% (n = 11) of methicillin-resistant isolates, respectively. In LR-MRSA isolates, some 23 S rRNA domain V mutations were observed: A2338T and C2610G (in 5 isolates); T2504C and G2528C (in 2 isolates); and G2576T (in 1 isolate). Amino acids substitutions were detected: in L3 protein (rplC gene) of (3 isolates) and in L4 protein (rplD gene) of (4 isolates). In addition, cfr(B) gene was detected (in 3 isolates). In 5 isolates, synergism was recorded when linezolid was combined with chloramphenicol, erythromycin, or ciprofloxacin. Reversal of linezolid resistance was observed in some LR-MRSA isolates when linezolid was combined with gentamicin or vancomycin. CONCLUSIONS: LR-MRSA biofilm producers' phenotypes evolved in the clinical settings in Egypt. Various antibiotic combinations with linezolid were evaluated in vitro and showed synergistic effects.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Linezolida/farmacologia , Vancomicina/farmacologia , Antibacterianos/farmacologia , Fenótipo , Testes de Sensibilidade Microbiana
7.
Biology (Basel) ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36290316

RESUMO

The most prevalent cause of infectious neonatal diarrhea is Group A rotavirus (RVA). Unfortunately, there is a dearth of data on the incidence of rotavirus-associated infections among Egyptian children. The present study aimed to isolate, propagate, and genotype human rotaviruses circulating among Egyptian children with acute gastroenteritis admitted to two main university pediatric hospitals, Abo El-Reesh and El-Demerdash, over two consecutive winters, 2018-2020. Diarrheal samples (n = 230) were screened for Group A rotavirus RNA using RT-PCR assay. In positive samples (n = 34), multiplex semi-nested PCR was utilized to determine G and P genotypes. Thirty-four (14.8%) of the collected samples tested positive. The genotype distribution revealed that G1P[8] was the predominant rotavirus genotype throughout the current study. All rotavirus-positive fecal samples were passaged twice on human colorectal adenocarcinoma cell line (Caco-2) and rhesus monkey kidney epithelial cell line (MA104). Both cell lines could successfully isolate 14.7% (n = 5 out of 34) of the identified strains; however, Caco-2 cell line was shown to be more efficient than MA104 in promoting the propagation of human rotaviruses identified in Egyptian children's feces.

8.
Front Cell Infect Microbiol ; 12: 904531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656033

RESUMO

Accumulating evidence has denoted the danger of resistance in tenacious organisms like methicillin-resistant Staphylococcus aureus (MRSA). MRSA, a supple bacterium that adopts a variety of antibiotic resistance mechanisms, is the cause of multiple life-threatening conditions. Approaching a post-antibiotic era, bacteria-specific natural predators, bacteriophages, are now given the chance to prove eligible for joining the antibacterial weaponry. Considering the foregoing, this study aimed at isolating bacteriophages with promising anti-MRSA lytic activity, followed by characterization and optimization of the production of the bacteriophage with the broadest host range. Five phages were isolated from different environmental sources including the rinse of raw chicken egg, raw milk, and, remarkably, the raw meat rinses of chicken and fish. Examined for lytic activity against a set of 23 MRSA isolates collected from various clinical specimens, all five phages showed relatively broad host ranges with the bacteriophage originally isolated from raw fish rinse showing lytic activity against all the isolates tested. This phage is suggested to be a member of Siphoviridae family, order Caudovirales, as revealed by electron microscopy. It also exhibited good thermal stability and viability at different pH grades. Moreover, it showed reasonable stability against UV light and all viricidal organic solvents tested. Optimization using D-optimal design by response surface methodology was carried out to enhance the phage yield. The optimum conditions suggested by the generated model were a pH value of 7, a carbon source of 0.5% w/v sucrose, and a nitrogen source of 0.1% w/v peptone, at a temperature of 28°C and a bacterial inoculum size of 107 CFU/ml, resulting in a 2 log-fold increase in the produced bacteriophage titer. Overall, the above findings indicate the lytic ability inflicted by this virus on MRSA. Apparently, its stability under some of the extreme conditions tested implies its potential to be a candidate for pharmaceutical formulation as an anti-MRSA therapeutic tool. We hope that bacteriophages could tip the balance in favor of the human front in their battle against multidrug-resistant pathogens.


Assuntos
Bacteriófagos , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos , Peixes , Especificidade de Hospedeiro , Staphylococcus aureus
9.
Biology (Basel) ; 10(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34571766

RESUMO

Gram-negative bacteria are common causes of urinary tract infections (UTIs). Such pathogens can acquire genes encoding multiple mechanisms of antimicrobial resistance, including carbapenem resistance. The aim of this study was to detect the carbapenemase-producing ability of some Gram-negative bacterial isolates from urine specimens of patients suffering from complicated UTIs at two vital tertiary care hospitals in Cairo, Egypt; to determine the prevalence of carbapenemase genes among plasmid-bearing isolates; and explore the possibility of horizontal gene transfer to other bacterial species. The collected isolates were subjected to antimicrobial susceptibility testing, phenotypic analysis of carbapenemase production, and molecular detection of plasmid-borne carbapenemase genes, then the extracted plasmids were transformed into competent E. coli DH5α. A total of 256 Gram-negative bacterial clinical isolates were collected, 65 (25.4%) isolates showed carbapenem resistance of which 36 (55.4%) were carbapenemase-producers, and of these 31 (47.7%) harbored plasmids. The extracted plasmids were used as templates for PCR amplification of blaKPC, blaNDM, blaVIM, blaOXA-48, and blaIMP carbapenemase genes. The blaOXA-48 gene was detected in 24 (77.4%) of the tested isolates while blaVIM gene was detected in 8 (25.8%), both blaKPC and blaNDM genes were co-present in 1 (3.2%) isolate. Plasmids carrying the blaOXA-48 gene from 4 K. pneumoniae clinical isolates were successfully transformed into competent E. coli DH5α. The transformants were carbapenemase-producers and acquired resistance to some of the tested antimicrobial agents as compared to untransformed E. coli DH5α. The study concluded that the rate of carbapenem resistance among Gram-negative bacterial uropathogens in Cairo, Egypt is relatively high and can be transferred horizontally to other bacterial host(s).

10.
Biology (Basel) ; 10(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34356479

RESUMO

Macrolide-resistant methicillin-resistant Staphylococcus aureus (MAC-MRSA) is one of the most clinically relevant pathogens due to its significant ability of resistance acquisition to different antimicrobial agents. This study aimed to evaluate antimicrobial susceptibility and the use of different combinations of azithromycin with other antibiotics for combating MAC resistance. Seventy-two Staphylococci (38.5%) (n = 187), showed resistance to MACs; of these, 53 isolates (73.6%, n = 72) were S. aureus and 19 (26.4%, n = 72) were coagulase-negative staphylococci (CoNS). Out of the 53 S. aureus and 19 CoNS isolates, 38 (71.7%, n = 53) and 9 (47.4%, n = 19) were MRSA and methicillin-resistant CoNS, respectively. The constitutive MACs, lincosamides and streptogramin-B (cMLS) comprised the predominant phenotype among S. aureus isolates (54.7%) and CoNS isolates (78.9%). The PCR analysis showed that the ermC gene was the most prevalent (79.2%), followed by msrA (48.6%), and ermA (31.9%). Azithromycin combinations with either linezolid, ceftriaxone, gentamicin, or cefotaxime provided synergy in 42.1%, 44.7%, 31.6% and 7.9% of the 38 MAC-MRSA isolates, respectively. Statistical analysis showed significant association between certain MAC resistance genotypes and the synergistic effect of certain azithromycin combinations (p value < 0.05). In conclusion, azithromycin combinations with either linezolid, or ceftriaxone showed synergism in most of the MAC-resistant MRSA clinical isolates.

11.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209170

RESUMO

BACKGROUND: This study aimed to produce, purify, structurally elucidate, and explore the biological activities of metabolites produced by Streptomyces (S.) griseus isolate KJ623766, a recovered soil bacterium previously screened in our lab that showed promising cytotoxic activities against various cancer cell lines. METHODS: Production of cytotoxic metabolites from S. griseus isolate KJ623766 was carried out in a 14L laboratory fermenter under specified optimum conditions. Using a 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium-bromide assay, the cytotoxic activity of the ethyl acetate extract against Caco2 and Hela cancer cell lines was determined. Bioassay-guided fractionation of the ethyl acetate extract using different chromatographic techniques was used for cytotoxic metabolite purification. Chemical structures of the purified metabolites were identified using mass, 1D, and 2D NMR spectroscopic analysis. RESULTS: Bioassay-guided fractionation of the ethyl acetate extract led to the purification of two cytotoxic metabolites, R1 and R2, of reproducible amounts of 5 and 1.5 mg/L, respectively. The structures of R1 and R2 metabolites were identified as ß- and γ-rhodomycinone with CD50 of 6.3, 9.45, 64.8 and 9.11, 9.35, 67.3 µg/mL against Caco2, Hela and Vero cell lines, respectively. Values were comparable to those of the positive control doxorubicin. CONCLUSIONS: This is the first report about the production of ß- and γ-rhodomycinone, two important scaffolds for synthesis of anticancer drugs, from S. griseus.


Assuntos
Antibióticos Antineoplásicos , Streptomyces griseus , Animais , Antraciclinas/química , Antraciclinas/isolamento & purificação , Antraciclinas/metabolismo , Antraciclinas/farmacologia , Antibióticos Antineoplásicos/biossíntese , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/isolamento & purificação , Antibióticos Antineoplásicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Células CACO-2 , Chlorocebus aethiops , Células HeLa , Humanos , Streptomyces griseus/química , Streptomyces griseus/metabolismo , Células Vero
12.
AMB Express ; 11(1): 109, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34313869

RESUMO

Failure in the treatment of P. aeruginosa, due to its broad spectrum of resistance, has been associated with increased patient mortality. One alternative approach for infection control is quorum quenching which was found to decrease virulence of such pathogen. In this study, the efficiency of a recombinant Ahl-1 lactonase formulated as a hydrogel was investigated to control the infection of multidrug resistant (MDR) P. aeruginosa infected burn using a murine model. The recombinant N-acylhomoserine lactonase (Ahl-1) was formulated as a hydrogel. To test its ability to control the infection of MDR P. aeruginosa, a thermal injury model was used. Survival rate, and systemic spread of the infection were evaluated. Histopathological examination of the animal dorsal skin was also done for monitoring the healing and cellular changes at the site of infection. Survival rate in the treated group was 100% relative to 40% in the control group. A decrease of up to 3 logs of bacterial count in the blood samples of the treated animals relative to the control group and a decrease of up to 4 logs and 2.3 logs of bacteria in lung and liver samples, respectively were observed. Histopathological examination revealed more enhanced healing process in the treated group. Accordingly, by promoting healing of infected MDR P. aeruginosa burn and by reducing systemic spread of the infection as well as decreasing mortality rate, Ahl-1 hydrogel application is a promising strategy that can be used to combat and control P. aeruginosa burn infections.

13.
Front Cell Infect Microbiol ; 11: 635597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136415

RESUMO

Antibiotic resistance is exuberantly becoming a deleterious health problem world-wide. Seeking innovative approaches is necessary in order to circumvent such a hazard. An unconventional fill-in to antibiotics is bacteriophage. Bacteriophages are viruses capable of pervading bacterial cells and disrupting their natural activity, ultimately resulting in their defeat. In this article, we will run-through the historical record of bacteriophage and its correlation with bacteria. We will also delineate the potential of bacteriophage as a therapeutic antibacterial agent, its supremacy over antibiotics in multiple aspects and the challenges that could arise on the way to its utilization in reality. Pharmacodynamics, pharmacokinetics and genetic engineering of bacteriophages and its proteins will be briefly discussed as well. In addition, we will highlight some of the in-use applications of bacteriophages, and set an outlook for their future ones. We will also overview some of the miscellaneous abilities of these tiny viruses in several fields other than the clinical one. This is an attempt to encourage tackling a long-forgotten hive. Perhaps, one day, the smallest of the creatures would be of the greatest help.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Antibacterianos , Bactérias , Humanos
14.
Antibiotics (Basel) ; 10(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806340

RESUMO

In this study, the correlation between the antibiotic resistance genes and antibiotic susceptibility among the carbapenem-resistant Gram-negative pathogens (CRGNPs) recovered from patients diagnosed with acute pneumonia in Egypt was found. A total of 194 isolates including Klebsiella pneumoniae (89; 46%), Escherichia coli (47; 24%) and Pseudomonas aeruginosa (58; 30%) were recovered. Of these, 34 (18%) isolates were multiple drug resistant (MDR) and carbapenem resistant. For the K. pneumoniae MDR isolates (n = 22), blaNDM (14; 64%) was the most prevalent carbapenemase, followed by blaOXA-48 (11; 50%) and blaVIM (4; 18%). A significant association (p value < 0.05) was observed between the multidrug efflux pump (AcrA) and resistance to ß-lactams and the aminoglycoside acetyl transferase gene (aac-6'-Ib) gene and resistance to ciprofloxacin, azithromycin and ß-lactams (except for aztreonam). For P. aeruginosa, a significant association was noticed between the presence of the blaSHV gene and the multidrug efflux pump (MexA) and resistance to fluoroquinolones, amikacin, tobramycin, co-trimoxazole and ß-lactams and between the aac-6'-Ib gene and resistance to aminoglycosides. All P. aeruginosa isolates (100%) harbored the MexAB-OprM multidrug efflux pump while 86% of the K. pneumoniae isolates harbored the AcrAB-TolC pump. Our results are of great medical importance for the guidance of healthcare practitioners for effective antibiotic prescription.

15.
AMB Express ; 10(1): 201, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33146788

RESUMO

Rhamnolipids are important biosurfactants for application in bioremediation, enhanced oil recovery, pharmaceutical, and detergent industry. In this study, rhamnolipids extracted from P. aeruginosa P6 were characterized to determine their potential fields of application. Thin-layer chromatographic analysis of the produced rhamnolipids indicated the production of two homologues: mono- and di-rhamnolipids, whose structures were verified by 1H and 13C nuclear magnetic resonance spectroscopy. Additionally, high performance liquid chromatography-mass spectrometry identified seven different rhamnolipid congeners, of which a significantly high proportion was di-rhamnolipids reaching 80.16%. Rha-Rha-C10-C10 was confirmed as the principal compound of the rhamnolipid mixture (24.30%). The rhamnolipids were capable of lowering surface tension of water to 36 mN/m at a critical micelle concentration of 0.2 g/L, and exhibited a great emulsifying activity (E24 = 63%). In addition, they showed excellent stability at pH ranges 4-8, NaCl concentrations up to 9% (w/v) and temperatures ranging from 20 to 100 °C and even after autoclaving. These results suggest that rhamnolipids, produced by P. aeruginosa P6 using the cheap substrate glycerol, are propitious for biotechnology use in extreme and complex environments, like oil reservoirs and hydrocarbon contaminated soil. Moreover, P. aeruginosa P6 may be considered, in its wild type form, as a promising industrial producer of di-RLs, which have superior characteristics for potential applications and offer outstanding commercial benefits.

16.
Curr Microbiol ; 77(7): 1233-1244, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32123985

RESUMO

Persisters of infectious agents are capable of surviving antibiotic treatment so the emergence of these subpopulations need to be overcome. In this study, we aimed to isolate, characterize and inhibit persister subpopulation in two clinical isolates Klebsiella pneumoniae and Proteus mirabilis. Different behavior profiles between the two isolates could be observed. The results of dose-dependent killing curve revealed that 2.3% (Klebsiella pneumoniae) versus 1.3% (Proteus mirabilis) persister cells could be recovered using 500 and 30 ug/ml ciprofloxacin, respectively. Upon resuscitation, persister cells exhibited only 65% versus 30% percentage growth and 5 versus 7 times cell elongation relative to Klebsiella pneumoniae and Proteus mirabilis, respectively. The levels of persister cells to ciprofloxacin of Klebsiella pneumoniae were dramatically decreased by about 79, 92, 97 and 83% in average by pre-exposure to hyperosmotic stress, temperature, different pHs, and hydrogen peroxide, respectively, while those of Proteus mirabilis were minimally decreased with corresponding reduction percentages of about 12%, 24 & 25%, and 0%. Regarding combating persisters, Klebsiella pneumoniae showed different response as compared to Proteus mirabilis. Among the tested sugars, the highest reduction of Klebsiella pneumoniae persister cells was obtained with pre-priming with sucrose while for Proteus mirabilis persister cells, the highest reduction was obtained with pre-priming with glucose. Using sodium salicylate with ciprofloxacin could eradicate persisters of Klebsiella pneumoniae at any tested concentration while for Proteus mirabilis it caused some reduction in persister cells at certain concentrations. Complete eradication of persisters was obtained by combining silver nitrate with ciprofloxacin for each test isolate.


Assuntos
Antibacterianos/farmacologia , Klebsiella pneumoniae , Proteus mirabilis , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana/fisiologia , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/fisiologia , Testes de Sensibilidade Microbiana , Infecções por Proteus/microbiologia , Proteus mirabilis/efeitos dos fármacos , Proteus mirabilis/fisiologia , Estresse Fisiológico/fisiologia
17.
Afr Health Sci ; 20(1): 190-198, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33402907

RESUMO

BACKGROUND: The emergence of multidrug-resistant (MDR) uropathogens has become a public health threat and current knowledge of the genotypic basis of bacterial resistance is essential for selecting appropriate treatment options. OBJECTIVES: To determine the prevalence of antimicrobial resistance among MDR uropathogens and to elucidate the molecular bases of plasmid-mediated resistance. METHODS: Bacterial isolates were recovered from urine specimens of 150 out-patients with signs and symptoms of urinary tract infections (UTIs) at El-Demerdash Hospital, Cairo, Egypt. Standard methods were used for identification, antimicrobial susceptibility testing was performed according to CLSI guidelines. RESULTS: Among the recovered isolates, 22.7% and 77.3% were Gram-positive, and negative, respectively. Of which; 43.3% were MDR with 60% harboring plasmids. Extended spectrum ß-lactamase (ESBL) genes bla CTX-M, bla SHV, and bla TEM were detected on plasmids of 89.7%, 41%, and 84.6% of the tested isolates, respectively. The aminoglycoside resistance gene aac6'-Ib/aac-6'-Ib-cr was found on plasmids of 92.3% of the tested isolates followed by qnrS (92.3%), qnrB (46.2%), and qnrA (7.7%). The most prevalent quinolone efflux pump gene was oqxB (38.5%), followed by oqxA (20.5%), then qepA (10.3%). CONCLUSION: High levels of resistance to nitrofurans, ß-lactam/ß-lactamase inhibitor, cephalosporins, aminoglycosides, and fluoroquinolones were detected, and their use as empirical treatment for UTIs has become questionable.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Bactérias Gram-Positivas/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Plasmídeos/efeitos dos fármacos , Infecções Urinárias/microbiologia , Adulto , Bacteriúria/tratamento farmacológico , Bacteriúria/epidemiologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Egito/epidemiologia , Feminino , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Bactérias Gram-Positivas/isolamento & purificação , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Plasmídeos/genética , Prevalência , Piúria/epidemiologia , Quinolonas/farmacologia , Análise de Sequência de DNA , Resistência beta-Lactâmica/genética , beta-Lactamases/genética
18.
BMC Microbiol ; 19(1): 18, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30658584

RESUMO

BACKGROUND: Response surface methodology (RSM) employing Box-Behnken design was used to optimize the environmental factors for the production of paromomycin, a 2 deoxystreptamine aminocyclitol aminoglycoside antibiotic, (2DOS-ACAGA) from Streptomyces (S.) rimosus NRRL 2455. Emergence of bacterial resistance caught our attention to consider the combination of antimicrobial agents. The effect of paromomycin combination with other antimicrobial agents was tested on some multiple drug resistant isolates. To the best of our knowledge, this is the first report on optimization of paromomycin production from S. rimosus NRRL 2455. A Quadratic model and response surface method were used by choosing three model factors; pH, incubation time and inoculum size. A total of 17 experiments were done and the response of each experiment was recorded. Concerning the effect of combining paromomycin with different antimicrobial agents, it was tested using the checkerboard assay against six multidrug resistant (MDR) pathogens including; Pseudomonas (P.) aeruginosa (2 isolates), Klebsiella (K.) pneumoniae, Escherichia (E.) coli, methicillin sensitive Staphylococcus aureus (MSSA) and methicillin resistant Staphylococcus aureus (MRSA). Paromomycin was tested in combination with ceftriaxone, ciprofloxacin, ampicillin/sulbactam, azithromycin, clindamycin and doxycycline. RESULTS: The optimum conditions for paromomycin production were a pH of 6, an incubation time of 8.5 days and an inoculum size of 5.5% v/v using the optimized media (soybean meal 30 g/L, NH4CL 4 g/L, CaCO3 5 g/L and glycerol 40 ml/L), 28 °C incubation temperature, and 200 rpm agitation rate that resulted in 14 fold increase in paromomycin production as compared to preliminary fermentation level using the basal medium. The tested antibiotic combinations showed either synergistic effect on paromomycin activity on most of the tested MDR pathogens (45.83%), additive effect in 41.67% or indifferent effect in 12.5%. CONCLUSION: RSM using multifactorial design was a helpful and a reliable method for paromomycin production. Paromomycin combination with ceftriaxone, ciprofloxacin, ampicillin/sulbactam, azithromycin, clindamycin or doxycycline showed mostly synergistic effect on certain selected clinically important MDR pathogens.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sinergismo Farmacológico , Paromomicina/biossíntese , Streptomyces rimosus/metabolismo , Testes de Sensibilidade Microbiana , Modelos Biológicos
19.
AMB Express ; 9(1): 7, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30617633

RESUMO

Solid-state fermentation has a special advantage of preventing the foaming problem that obstructs submerged fermentation processes for rhamnolipid production. In the present work, a 50:50 mixture of sugarcane bagasse and sunflower seed meal was selected as the optimum substrate for rhamnolipid production using a Pseudomonas aeruginosa mutant 15GR and an impregnating solution including 5% v/v glycerol. Using Box-Behnken design, the optimum fermentation conditions were found to be an inoculum size 1% v/v, temperature 30 °C and unlike other studies, pH 8. These optimized conditions yielded a 67% enhancement of rhamnolipid levels reaching 46.85 g rhamnolipids per liter of impregnating solution, after 10 days, which was about 5.5 folds higher than that obtained by submerged liquid fermentation. Although maximum rhamnolipids concentration was obtained after 10 days of incubation, rhamnolipids concentration already reached high levels (41.87 g/l) after only 6 days. This rhamnolipid level was obtained in a shorter time and using lower carbon source concentrations than most studies reported so far. The findings obtained indicate an enormous potential for employing solid-state fermentation for rhamnolipid production by the studied isolate.

20.
Appl Microbiol Biotechnol ; 102(24): 10613-10622, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30310963

RESUMO

The increasing occurrence of resistance among Pseudomonas aeruginosa clinical isolates necessitates finding alternatives to antibiotics for controlling the infection of such pathogenic bacteria. In this study, lactonase gene ahl-1 from Bacillus weihenstephanensis isolate-P65 was successfully cloned and expressed in Escherichia coli BL21 (DE3) under the control of T7 promoter for utilizing its quorum quenching activity against three multidrug-resistant (MDR) P. aeruginosa clinical isolates. The biological activity of the overexpressed lactonase enzyme (Ahl-1), tested using a synthetic signal and Chromobacterium violaceum CV026 as a biosensor, displayed good catalytic activity using hexanoyl homoserine lactone (HHL) as a substrate and Chromobacterium violaceum (CV026) as a biosensor (77.2 and 133 nm min-1 for the crude and the purified Ahl-lactonase enzymes, respectively). Upon challenging its ability to inhibit the virulence of three MDR P. aeruginosa clinical isolates, recombinant Ahl-1 successfully prevented the accumulation of acylhomoserine lactone signals resulting in a significant reduction in the investigated virulence determinants; protease (from 40 up to 75.5%), pyocyanin (48-75.9%), and rhamnolipids (52.7-63.4%) (P value < 0.05). Ahl-1 also displayed significant inhibitory activities on the swarming motility and biofilm formation of the three tested MDR P. aeruginosa clinical isolates (P value < 0.05). Consequently, Ahl-1 lactonase enzyme in this study is considered a promising therapeutic agent to inhibit P. aeruginosa pathogenicity with no fear of emergence of resistance.


Assuntos
Hidrolases de Éster Carboxílico/genética , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/genética , Proteínas Recombinantes/genética , Bacillus/genética , Biofilmes/crescimento & desenvolvimento , Hidrolases de Éster Carboxílico/metabolismo , Farmacorresistência Bacteriana Múltipla , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Glicolipídeos/metabolismo , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Piocianina/metabolismo , Proteínas Recombinantes/metabolismo , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA